A SIMPLE DERIVATION OF A FORMULA OF FURSTENBERG AND TZKONI

BY

R.E. MILES

ABSTRACT

It is shown that an integral geometric formula concerning n-dimensional ellipsoids, due to Furstenberg and Tzkoni, is a corollary of a classical formula of Blaschke and Petkantschin.

Let E denote an n-dimensional ellipsoid centred at the origin of \mathbb{R}^n and (for $k = 1, \dots, n-1$) let F_k^n denote the Grassmannian manifold of k-dimensional subspaces ξ of \mathbb{R}^n . Furstenberg and Tzkoni [2] give two derivations, both somewhat "high-powered", of the integral geometric formula

(1)
$$c_{n,k}V_n(E)^k = \int_{F_k^n} V_k(E \cap \xi)^n dm(\xi)$$

where $V_n(E)$ denotes the *n*-dimensional volume of E, $dm(\xi)$ is the normalized rotation invariant density element in F_k^n , $V_k(E \cap \xi)$ denotes the *k*-dimensional volume of the ellipsoidal section $E \cap \xi$, and $c_{n,k}$ is a constant depending only on *n* and *k*. (Taking *E* to be the unit ball *B*, we find

(2)
$$c_{n,k} = \left\{\frac{n}{2}\Gamma\left(\frac{n}{2}\right)\right\}^k / \left\{\frac{k}{2}\Gamma\left(\frac{k}{2}\right)\right\}^n.\right)$$

There now follows a simple alternative derivation of (1). Let x_1, \dots, x_k be points of \mathbb{R}^n such that the corresponding vectors X_1, \dots, X_k from the origin are linearly ndependent, let ξ be the k-dimensional subspace spanned by these vectors, and et x_1^k, \dots, x_k^k "represent" x_1, \dots, x_k , respectively, with respect to k-dimensional cartesian coordinates in ξ (a complete specification would involve the notion o

Received July 19, 1972

fibre bundles). Blaschke [1] and Petkantschin [4] derived the fundamental integral geometric density relation

(3)
$$\prod_{1}^{k} dx_{i} = \nabla_{k}^{n-k} d\bar{m}(\xi) \prod_{i=1}^{k} dx_{i}^{k}$$

where dx_i , dx_i^k denote *n*- and *k*-dimensional Lebesgue volume elements, respectively, $d\bar{m}(\xi)$ denotes the (un-normalized) invariant density element in F_k^n , and ∇_k is the *k*-dimensional volume of the parallelotope with edges X_1, \dots, X_k . For a simple proof of (3), see [3, §§2, 3]. Thus

(4)
$$V_n(E)^k = \int \cdots \int_{E^k} \prod_{i=1}^k dx_i$$
$$= \int_{F_k^n} \int \cdots \int_{(E \cap \xi)^k} \nabla_k^{n-k} \prod_{i=1}^k dx_i^k d\bar{m}(\xi)$$

which, by affine transformation within ξ ,

$$= \int_{F_{\nu}^{n}} \{V_{k}(E \cap \xi)/V_{k}(B \cap \xi)\}^{n}$$
$$\int \cdots \int_{(B \cap \xi)^{k}} \nabla_{k}^{n-k} \prod_{i=1}^{k} dx_{i}^{k} d\bar{m}(\xi)$$
$$= (c_{n,k})^{-1} \int_{F_{k}^{n}} V_{k}(E \cap \xi)^{n} dm(\xi).$$
Q.E.D

Furstenberg and Tzkoni indicate that, when k = 1, (1) holds for any symmetric star-shaped body in \mathbb{R}^n , and ask whether, when k > 1, (1) is valid for more general bodies than the ellipsoid. The present proof suggests a negative answer.

As a corollary of (4), we have

(5)
$$\int \cdots \int_{B^n} \nabla_n^t \prod_{1}^n dx_i = \left\{ \pi^{n/2} / \Gamma\left(\frac{n+t}{2} + 1\right) \right\}^n \prod_{j=1}^n \left\{ \Gamma\left(\frac{j+t}{2}\right) / \Gamma\left(\frac{j}{2}\right) \right\}$$
$$(t = 0, 1, 2, \cdots).$$

The values of many further "isotropic" multiple integrals like (5) are to be found in [3]. The derivations stem from (3) and the companion Blaschke-Petkantschin formula

(6)
$$\prod_{1}^{k} dx_{i} = \{(k-1)!\Delta_{k-1}\}^{n-k+1} d\bar{M}(\eta) \prod_{i=1}^{k} dx_{i}^{k-1} \quad (k=2,\cdots,n),$$

where η is the (k-1)-dimensional flat containing x_1, \dots, x_k , $d\overline{M}(\eta)$ is the corresponding invariant density element, x_i^{k-1} represents x_i within η , and Δ_{k-1} is the (k-1)-dimensional volume of the simplex convex hull of x_1, \dots, x_k (see [4, p. 275]).

References

1. W. Blaschke, Integralgeometrie 2. Zu Ergebnissen von M. W. Crofton, Bull. Math. Soc. Roumaine Sci. 37 (1935), 3-11.

2. H. Furstenberg and I. Tzkoni, Spherical functions and integral geometry, Israel J. Math. 10 (1971), 327-338.

3. R. E. Miles, Isotropic random simplices, Adv. Appl. Probab. 3 (1971), 353-382.

4. B. Petkantschin, Integralgeometrie 6. Zusammenhänge zwischen den Dichten der linearen Unterräume im n-dimensionalen Raum, Abh. Math. Sem. Univ. Hamburg 11 (1936), 249-310.

Australian National University Canberra, Australia